%

lic Release

BUTION STATEMENTA
ved for Pub

O

AP

DISTRI

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

 TECHNICAL NOTE

No, 1876

CALCULATION OF THE AERODYNAMIC LOADING OF FLEXIBLE WINGS |

OF ARBITRARY PLAN FORM AND STIFFNESS
By Franklin W, Diederich

Langley Aeronautical Laboratory
Langley Air Force Base, Va.

20000803 206

z |
pus
e |
E | :
e |
= .
E@J ~ Washington
April 1949

Reproduced From
Best Available Copy

\DTI0 QUALITY INGFECTED 4

O AGMw-o-3y




ERRATA

NACA TN 1876
CALCULATION OF THE AERODYNAMIC LOADING OF FLEXIBLE WINGS
OF ARBITRARY PLAN FORM AND STIFFNESS
By Franklin W. Diederich
April 1949

Equations (32), (32a), (35a), and (36a) on pages 18 and 19 are in error
in that a cos A factor has been omitted. The correct expressions are:

e, = c:mel'( g-:-l- a> c0s (32)
%’l =, %;(2—5; a> cosn (328)
' o -
Cr = m, cosA :;’Zr LKlJl [gg:l {zi—l a} © o (3%8)
. ‘ OV r i .
T oot G a L [ e e

NACA-Langley - 7-25-49 - 925




NATTONAL ADVISORY COMMITTEE FOR.AERONAUTICS

TECHNICAL NOTE NO. 1876

CALCULATION OF THE AERODYNAMIC TOADING OF FLEXTBLE WINGS
OF ARBITRARY PLAN FORM AND STIFFNESS

By Franklin W. Diederich
SUMMARY

A method is presented for calculating the aerodynamic loading, the
divergence speed, and certaln stability derivatives of wings and tail
surfaces of arbitrary plan form and stiffness. Provision is made for
using elther stiffness curves and root—rotation constants or influence .
coefficients in the analysis. Computing forms, tables of numerical
congtants required in the analysis, and an illustrative example are
included to facilitate calculations by means of the method.

INTRODUCTTON

- The distribution of the aerodynamic loading on wings and tail
surfaces 1is important both for the structural analysis of these com—
ponents, since 1t determines the applied bending moment and torque
acting at any station, and for their aerodynamic analysis, since it
affects the stability derivatives to a large extent. At high speeds the
aerodynamic loading, particularly in the case of swept wings, is
. greatly affected by the structural deformations caused by the loading.
The present paper 1s concerned with the determination of the effects of
structural flexibility on the aerodynamic loading of wings of arbitrary
plan form and stiffness.

The problem of load distribution was analyzed for unswept flexible
wings as early as 1926 (reference 1) but has received relatively little
attention since that time. The only new effect considered in subsequent
work is aerodynamic induction (reference 2). .No work appears to have been
done on the loading of flexible swept wings. The related problem of aero—
elastic divergence of swept wings with certain prescribed gtiffness
variations has been treated in reference 3.

!

The present paper treats the problem of aerodynamic loading by
matrix methods. Aerodynamic induction is taken into account approxi—
mately, since suitable aerodynamic influence coefficients are not avail—
able for wings of arbitrary plen form. When they become available they
can readily be incorporated 1n this method. Structural flexibility is
taken into account in the form of elther calculated stlffness variations
or méasured influence coefficients. The required integrating matrices
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are presented for both a six—point and a ten—point solution. For the
gsix—point solution convenient computing forms are included as well. The
method is illustrated by means of en example. In addition to the analysis
of the aerodynamic loading, the determination of the related divergence
speed and of certain stability derivatives is discussed.

For the convenience of the reader unfamiliar with matrix terminology
a summary of matrix methods has been included in the appendix. The
sections on "Application of the Method" and, in particular, "Instructions:
for Solution" may be repd without reference to the section "Derivation of

the Method."

- SYMBOLS
. (b2
A agpect ratio 5
[A] aeroelastic matrix
2 2.
m_gspa ey _C..“costA
a *  dimensionless parameter <e A dp'r >
(6I)
r
at parameter (meqswcr cos A)
ac section aerodynamic center, measured from leading edge,
- fraction of chord : : o
b wing span, inches
c chord measured parallel to the air stream, inches
c average wing chord, inches (%)
_ ) P :
c section 1ift coefficient [—) .
CI wing 1ift coefficient | —
S gs
| ‘ - ~ M? N
CBMW wing root bending-moment coefficient [ —L
: aSh,
Oy wing rolling-moment coefficient <QCBMW>
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ET

EAN
[x5]

v asp3c, tan A cos3A
dimensionless parameter < i Ao LU -

(&1),,

bending stiffness in planes perpendicular to the elastlic
axis, pound—inches?2 . ‘

location of elastic axis measured from leading edge, fraction
of chord

distance from reference axis to section aerodynamic center
(positive forward), fraction of chord

torsional stiffness in planes perpehdicular tb the elastic
axis, pound—inches

unit matrix

matrix defined by equation (12)

integrating matrix for sihgle integration from tip to'root
first row of K; matrix

Integrating matrix for double integration from tip to root
first row of K, matrix

integrating matrix for single integration from root to tip'
matrix relating concentrated and accumulated_torque

matrix relating concentrated loads and accumilated bending
moments

matrix converting torques due to distributed loads to torques
due to concentrated torques

matrix converting bending moments due to distributed loads to
bending moments due to concentrated loads

1ift on both wings but excluding 1ift on part of wing covered
by fuselage, pounds :

running air load along the reference axis, pounds pér inch

accumlated bending moment (in planes perpendicular to the
reference axis unless specified otherwise), inch—pounds

effective section iift—curve slope for angles of attack due to
deformation, per radian '
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Mg, effective section lift—curve slope /for additional—type angle—-
of-attack distributions, per radian '

m, section 11ft—-¢urv¢ slope, pef radian

P concentrated load, pounds : |

pb |

= wing-tip helix angle

Qu,’Qq) . root-twist cbnsta.nts (see equation (9))
Qp root-bending constant (see equation (9))

dynamic pressure, pounds per square inch

R concentrated torque, inéh—pounds
s total wing area including part of wing covered by fuselage ,
: square inches .
8 distance from wing root to wing tip perpendicular to the air
stresm (see fig. 1), inches |
8p length of wing along reference axis (see fig. 1), inches

T ‘accumlated torque (m planes perpendicular to the reference
axls unless specified otherwise) , Iinch-pounds ‘

w . distance between the effective root and the innermost E:omplete
gection of the torsion box perpendicular to the elastic
axis, inches : -

Yy lateral ordinate measured from wing root, inches

y lateral center of pressurie s inches |

v angle of attack, radia.ﬁs

a equivalent angle of attack, radians és + :'—j—l G»g)

r  local dihedral angle due to deformation or glopé of wing
deflection curve at reference axis, radians

4 gtructural deflection, inches

] distance slong reférence axis, inches

A angle of sweepback (measured to the feferenoe axis unless

specified otherwise), degrees
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[°]
=]

influence-coefficient matrii for wing twist 1n plaﬁes parallel
to the air stream due to concentrated unit loads applied at

the reference axis, radians per pound

influence-coefficient matrix for wing twist in planes parallel
to the air stream due to concentrated unit torques applied
in planes parallel to the air stream, radians per inch—

pound.
¢ angle of twist in planes perpendicular to the reference axis,
radlans
Subscripts:
a additional
c midchord
D divergencé
fw flexible wing
P4 geometric
LE leading edge
M due to bending moment ‘
MAC pertaining to the mean aerodynamic chorad
P - damping in roll
r at root or effective root
rw rigid wing
\ structural (due to structural deformations)
sub subsonic
spr supersonic
T due to torque
TE tralling edge
w wing exclusive of fuéelage
Prime mark:

in or pertaining to sections parallel to air stream rather
than perpendicular to the reference axis

Matrix notation:

{}
L]

colum matrix

row matrix
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[. ] square matrix

[°] ' dlagonal matrix

DERIVATION OF THE METHOD

Method Employing Stiffness Curves

Assumptions.— In the d.evelopment of. the method the following
agsunptions are made:

;

(a) The effects of aerodyna.mic induction may be taeken into account
by applying an over—ell correction to strip theory and rounding off the

resulting load distribution at the tip.
(b) A1l deflections and angles of attack are small.

(¢) The wing is mounted flexibly at en effective root perpendicular
to the elastic axle through the intersection of the elastic axis and
the fuselage (see fig. l) the root rotations belng proportional to the
root bending moment and root torque

(d) An elastic axis exists in the outer portion of the wing, this
axis being defined as the elastic axis the wing would have if it were
mounted rigidly some distance outboard of the root approximately perpen—

dicular to the midchord line. (Near the root the elastic axis is defined

as the extension of the outboasrd elastic axis.)

(e) A1l deformations are given by the elementary theories of
bending and of torsion about the reference axis, which :ln this case is
the elastic axis.

Alr loads.— In keeping with assumptions (a) and (b) the force on
a wing section of unit width parallel to the direction of flight is

1t

qc (mea,s + mel“g) cos A
meqc® cos A (1)

where the equivalent angle of attack o 1s defined by -

g ‘
E=a,s+ﬁ-;]—'ag (12)

v
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The effective section lift—curve slope m, for angle—of-attack distribu—
tions due to structural deformations has been given in reference 3 on
the basis of the reasoning of reference 4 for subsonic speeds as

= —_— 2
Te moA+1LcosA o o (2)

Similarly, the effective 1ift—curve slope mel for additional~type
angle—of-attack distributions is determined by the same reasoning as

Te1 = o 12 cos A (3)

Both slopes mugt be multiplied by cos A, as in equation (1), in order
to apply to loads acting on sections and angles' of attack measured
in planes parallel to the direction of flight.

The torque of the running load 1' about the reference axis is l'elc
for uncambered sections (for cambered sections the torque at zero 1lift
migt be added and the analysis of the following paragraphs modified
accordingly). This torque may be resolved into a running torque about
the elastic axis and a running bending moment sbout a line perpendicular
to the elastic axis. The running load, torque, and moment must then be
mltiplied by cos A to yileld their values per unit length along the
elastic axis, so that "

Vz = myqcd cosA (%)

or, in matrix notation,

{Z } = meq(coseA) [3){&'} : | (ha)

The running torque and the running bending moment are, respectively,
{Zelc cos A} and {—lelc sin A}. The running bending moment leads to

accurmilated bending moments which have to be added to the accumulated -
bending moment due to the running load. : o

The accumulated torque T 1is obtained from the running ‘Eorg_ue by
an integration inboard from the tip. This integration may be performed
by a matrix [Kl] which is based on Simpsonts rule with a 'modification

suggested by V. M. Falkner at the tip. (See appendix.) The effect of
Falkner's modification is to round off the calculaeted load distribution
and cause it to go to zero with an infinite slope at the tip, as the
aerodynamic 1ift distributions actually do. The matrix is given in
table I. : '
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. Similarly, the accumilated bending moment M is obtained by a double
integration inboard from the tip of the running load and a single
integration of the running moment. The double integration may be - R ¢
performed by enother matrix EKQ] (given in table IL), which is based

on the equivalent of Simpsonts rule for moments, Falkner's modification
again being made at the tip. The derivation of the integrating matrices
is discussed in somewhat greater detail in the appendix.

The accumulated torque ahdvbending mbment may then be written as

{T} SA[Kl] {161? cos A} |
meqSAeerI?(COSSA)[K]J[%; (_CC; )2] {&}‘ | | )

and

fr}

+

5,2 [k {7,} - BA[Kl] {'Lelc sin'A} "

s ol [2] ~6on 022 ] 2 )|l o

Equations of eéuilibrium.— The equations of equilibrium:of a
deformed wing referred to the elastic axis are

dp _
(&) T —,,T - | (7)
) _ L S
EI d_y—M . - s . (8)

These equations must be integrated outboard from the root to obtain ¢
end I'. The integrations may be performed by a matrix [K3] (see o

table TIT and appendix), also based on Simpson's rule without the tip.
modification, however, eince the torques and moments go to zero with
finite and zero slopes, respectively. To the deformaticns obtained in
this manner the rotations due to the root deflection, @, and T,




w Dbeing defined

{o}- (%; [K3][

a8 in figure 1.

o
(67)
GJ
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mist be added. The root rotations are defined by four dimensionless
- congtants: ‘
- Py [T |
%T = rT/ z : (95')
w/(en),
Q’ﬂ!{& .
QqM = (9p)
w/(GT),
r. [T
Qp = rT/ - (9¢)
T w/(EI)..
. 1" ‘ .
_ _EMZ¥E_ (94)
M w/(EI)r
which may be combined into two other constants
= %T/Tr = Q‘PI' - )r tan AQ > cos A (%)
Sar w/(GT),, (ET),. Trp
W/ ( (67)y tan AQ \ A (or)
- = — an cos
QC-’M W/(GJ)r Qq)M (EI)I- : PM/ ‘

The deformations may then be written as

(10)

r] + % er-[IQ] {r} +_% QW[IOJ{M}
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Vv

&}=?L*FQFH”] s %4+—ww@1h} =

EI)r

where the matrix [I,] is defined by

0000 . .|
1000

: 11000

[Io]= 1000 (12)
1000

The angle of attack due to the structural deformations og is
related to ¢ and T Dby
= (@ —T tan A) cos A » o (13)

If equations (5), (6) (10), and (11) are ‘substituted in the matrix
equivalent of equation (13), the following relation is obtained:

ool

where the aeroelastic matrix [A] is defined by

[Aj - ,[K3] [SG—G?-I'-} LA (QGT - &, tean 4) [Io]

o}

(GJ)r(b 219[]%] [(EI)] 1][ (ﬂ

+

e e e oY ] I
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and the parsmsters

- 2coshA
megspceq_ C..ccos
a = (G];') al : ' (16)
" v
and
(GJ)
_ % r oA tan A ' (16a)

(EI)r e Op CO8 A

are substentially the same parameters as those used in reference 3.

Solution of the equations.— If 1t is desired to calculate the
asrodynamic loading corresponding to a given geometrical angle—of-attack
distribution and dynsmic pressure, equation (14) may be rewritten as

follows: .
[[I]_a[q{gz_la - {ag}' | (17)

In this form 1t constitutes a set of linear simultaneous equafions for
the o values in terms of ag velues. From the calculated & values

the 1ift distribution may be determined from either equation (1) or (4).

The divergence dynamic pressure may be obtained from equation (17)
by setting the determinant of the square matrix on the left side of the
equation equal to zero. This procedure is equivalent to setting Qg

equal to zero in the term o of eguation (14), so that

{%} = a[Aj {as} . (18)

The critical value of a 18 then determined by matrix iteration and
hence the dlvergence dynamic pressure from equation (16).

Method Employing Influence Coefficients

The assumptions made in the preceding sections concerning the
behavior of the wing structure are umnecessary if influence coefficients
for the given structure are available from test date or refined methods
of calculation. The coefficients most convenlent for this analysls are
those giving the rotation of the structure in planes parallel to the
direction of flight due to vertical loads applied along & convenient
reference axis and due to torques about lines perpendicular to the
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direction of flight. Since it is usually more convenient to apply

concentrated rather than distributed loads in structural tests, the

influence coefficients are considered in this analysis to have - ]
been obtained in this manner.

The angle of struétural deformation oy may be expressed in terms
of the influence coefficients‘ og and -@P as follows:

{%} = [<I>RJ {r} + [o5] {P} | | (19)

where the R's and P's are arbitrary concentrated torques and loads,
the latter being applied at the reference axis. The accumulated torques
and bending moments about lines perpendicular and parallel respectively,
to the direction of flight may be related to the concentrated torques
and loads by means of the summation matrices [Kﬁ] and [Kﬁ] (see

appendix) as follows:
{T'} = [Kh]{R} - ta.nvA{M'} -~ (20)
f} - sl o .,

These relations may be solved for the values of R and P required to
produce given distributions of accumulated torque and bending moment

fo}- (5 {fe) « e e
SREORG =)

The accumulated torques and bending moments produced by the air
load are then ,

{T'} = s.w[Kl] {z_'elc} - {M'} tan A . | . (2k)

IM=_ [KE]{“} | | (25)
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Upon substituting equations (22), (23), (24), (25), and (1) into
equation (19), the following equation is obtained:

fog} = ot [a]f5) (26)
where |
al! = mggsyc, cos A (27)

(o)

(A7 = Jon,oe[eg] [ - ('éc;)2 - [ I

[«

where, in turn

[%6]
[%7]

are given in tebles IV and V.

[?4]_1[*'-‘1] . v (292)

o ] e

The solution of equation (26) is obtalned in the manner previously
described for equation (1k).

APPLICATION OF THE METHOD

Determination of the Structural Parameters _

At the time an aercelastic analysis is performed no experimental
stiffness data are usually avallable, so that the calculated stiffness
curves must be used. In order to use these curves it is necesgary to
assume the exlstence of a reasonably straight elastic axls. The location
- of this axis may be estimated by considering it to be the line connecting
the shear centers of the individual sections. If the elastic axis
obtained in this mannsr is not reagonably straight within a few percent
of the chord, the results of the analysis may not be sufficiently reliable.
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The stiffnesses GJ and EI do not have much physical significance
inboard of the last point where there 1s a complete cross section of the
torsion box. (See fig. 1.) In order to arrive at estimates of the root
gtiffnesses (GJ) end (EJ),, which serve primarily as reference values

in thls asnalysis, the stiffness curves have to be extended. It is con—
venient to consider the stiffnesses to be constant inboard of the last
complete section of the torsion box; this procedure should yield conserva—
tive values of the root rotations.

The most difficult problem incurred in analyzing the deflections on
the basis of stiffness curves appears to be the estimation of the root
rotations. As used in this analysis, they are the torsion and bending
deflections imposed by the triangular inner portian of the wing and the
carry—through bay on the rest of the wing. As seen in figure 2, which
. is plotted from the data of reference 5, these values are essentially
constant along the span, -so that they actually constitute rigid-body
rotations. (The bending rotations have been obtained by taking the
difference in slope between curves calculated by consldering the wing
to be cantilevered at the effective root — the root used to calculate
torsional deformations in reference 5 — and the averages of the leading-
edge and trailing-edge deflections actually measured. The twlsts were
obtained by subtracting the twists calculated on the basis of the assumed
effective root fram the meagured twists. )

The rotations should in any practical case be calculated by analyzing
the triangular root and the carry—through bay and made dimensionless by
nmeans of equations (9). If such an analysis is not avallable, the dimension—
leess rotation parameters shown in figure 2 may be used as a guide; 1t
mist be kept in mind, however, that in the case of a sweptforward wing
the parameters QQM end QRP would have the opposite sign.

.4

Once the structure under investigation is built, fairly simple

" deflection tests, similar to those performed in reference 5, may be used
to check the root—rotation parameters by calculating the differences
between the observed rotations and those calculated by simple beam
theory considering the wing cantilevered at the effective root; at the
gsame time the existence end estimated location of the elastic axis may
be verified. If the experimental program is falrly extenslve it is
desirable to measure influence coefficients directly. These influence
coefficients can then be used in conjunction with the alternate method
described in the preceding section to obtain a quick check on the aero—
elastic ansalysis based on calculated stiffnesses.

The influence coefficients uged in the analysis consisf of the .
rotations of sections parallel to the direction of flight due to '
concentrated unit torques in planes parallel to the plane of symmetry
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or concentrated unit loads at the reference line. Thege rotations in
radians are entered in tables of the form:

] o [ee]

TWIST AT STATION y/s, DUE TO TWIST AT STATION y/s,, DUE TO
UNIT CONCENTRATED TORQUE AT UNIT CONCENTRATED LOAD AT
yl/sw : y1/éw
yi/ee| y1/8 |
0.2]0.40.6 [0.8]0.9]1.0 0.2[0.40.6/0.8]0.9]1.0
/ey v /ey |
0 0
0.2 | 0.2
0.4 0.k
0.6 ' 0.6
0.8 | 0.8
0.9 . {1 0.9

These particular tables would be used for a six—point analysis; similar
tables would be used for a ten—point analysis. In either case it is
to be noted that the twists are measured at values of y/s, from O to 0.9,

whereas the loads are applied at yi/s, values from 0.2 to 1.0. The

tables obtained in this mamner constitute the desired influence—
coefficient matrices.

If the wing sections are found to twist nonuniformly, so that they
become cambered in effect, the angles of twist ag to be entered in
the Influence—coefficient matrices have to be defined in a different
menner according to vhether the aeroelastic analysis 1s performed for
subsonic or supersonic speeds. At subsonic speeds the 1lift depends on
the slope of the mean camber line at the three—quarter—chord point, so
that the effective angle of attack is . :

| ag = 2 Séf_:;fjgiz , (30)

c
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At supersonic speeds the 1ift depends‘primarilyzon the average slope of
the mean camber line, so that ' o

iz — Srx
0y = ———

(31)

Determination of the Aerodynamic Pafameters

The selection of the aerodynamic parameters m, and o1 for the
calculation of the divergence speed has been discussed in reference 3.
For calculating the aerodynamic loading at a given flight condition the
aerodynamic paramsters are chosen for that flight condition. The
- effective lift—curve slopes mg and mg, are appliceble only to subsonic

" subcritical speeds. At higher speeds no simple span correction 1s
available; neglect of the span correction tends to be conservative for

calculation of the divergence speed and the aerodynamic loading, however.

Tnegtructions for Solution

Two sets of integrating matrices have been prepared, one for a gl1x—
point solution and one for a ten—point solution. The former should . be
adequate for all practical purposes; only where the stiffness curves are
very irregular near the root does the ten—point solution have to be
resorted to. The points considered by the two sets of tables are at

E’L = 0, 0.2, 0.k, 0.6, 0.8, and 0.9 for the shorter solution and
A . .

5111\-= 0, 0.1, 0.2, 0.3, o._1+, 0.5, 0.6, 0.7, 0.8, and 0.9 for the longer
golution. The procedure to be followed for elther solﬁtion is ldentical;
although computing forms are presented in this paper only for the six—
point solution, their extension to apply to the ten—point solution 1s

obvious.

Calculation of the matrices.— The first step in the aeroelastic
analysis by means of the stiffness curves is the calculetion of the
seroelagtic matrix [A] from the physical and geometrical parameters
of the wing. These parameters are conveniently tabulated in a form of
the type shown in table VI(a). The computation is then carried out
according to the instructions of teble VI(b), each step in the procedure
being identified by the number in the upper left cornmer of each box.
Tt must be kept in mind that many of the operations call for matrix
multiplications where the order of the multiplicands is of importance.
(A brief summary of matrix methods is presented in the appendix.) The
aeroelastic matrix is obtained as the last step (step 13) of the
 computations in this form which constitutes an evaluation of the

A matrix given in equation (15).
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A special case arises when elr "is gero. If 'el is not zero

along the remainder of the span, its value at_some point other than the

2
. e ¢
root may be used as a reference value. The gl— (3-> matrix and the
1 T.

mltiplying factors of steps 8 and 9 as well as the definition of the
parameter a are then based on this other reference value rather
than 01, If ey 1is zero along the entire span, step 1 and steps 3

to 8 may be omitted and steps 9 to 13 should be modified as follows:

(ET) ‘ |
Step 9 (GJ): Ew; t::“A [Io]
Step 10 [@]_ [@]
Step 11 Ag is
Step 12 Omit

ser s [, - [©] [@]

If influence coefficients of the proper type are avallable, the
calculation of the aeroelastic matrix [A'] is carried out directly
by means of equation (28). '

Solution for divergence dynamic pressure.— In order to determine
the value of the parameter a or af corresponding to divergence, the
aeroelastic matrix [A] or [Aﬁ] is iterated (see appendix) as indicated
by equation (18). Table VII(a) may be used for this purpose. The result
is the critical value of a or at!. The divergence dynamic pressure is
then calculated from equation (16) or (27). It is to be noted that this
pressure will be in pounds per square inch. Since the aeroelastic matrix
is independent of the Mach number, except insofar as ey varies with Mach

number, the samb critical value of a may be used to calculate the diver—
gence dynamic pressure for an entire range of Mach numbers. If the value
of e; changes, however, as it does between the subsonic and supersonic
region, the critical value of a has to be calculated for both values

of. ey .

If the value of e1 18 zero along the entire span and the EA]

matrix has been calculated according to the modified ingtructions,
iteration of the matrix will give the value of the parameter d at
divergence. From the definition of 4 the divergence dynamic pressure
may then be calculated.
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Solution for asrodynamic loading.— In order to calculate the aero—
dynamic loading corresponding tc a glven flight condition and geometric
angle—of—attack distribution the aeroelastic matrix [A] or [Af]  is
mltiplied by the value of a or a% calculated for the given flight
condition and subtracted from the unit matrix [I] (Ssee equation (17).)
The result may be entered in table VII(b). Again it must be noted that the
value of the aeroelastic matrix varies with the flight condition if e
varies, so that the aeroelastic matrix corresponding to the proper e;
value must be selected. The resulting matrix constitutes the coefficients
of a set of simultaneous linear algebraic equations for the unknown values

of the effective angle—of-attack distribution of the deformed wing.

{ﬁ.—?— o, in terms of the known angle—of—attack values of the rigid
l . ‘1
wing {@g}. Table VII(b) is set up for the calculation of the additional
loading, the damping—in—roll loading, and a third arbitrary loading; as
meny loadings as desired may, of course, be calculated by this method.
The solution of the equations may be carried out in any convenient manner.
The form of table VIL(b) has been prepared for use in conjunction with
Crout?'s method of solving linear simultaneous equations (reference 6).

In the case where e 1s zero along the .span, the headings at the
top of tablée VII(b) should be modified to read

e S a———————— d_.."'_

[ERIA

where [A]e_ -0 has been calculated according to the modified Instructions
end d has been obtained by iterating [A]el=0'

. 1 .
distribution (a,g = 1) constitute values of the ratio cy ﬁ: St

or (cc-,) - /(ccz)rw in view of the assumptions made concerning the air

forces. The section loading of the flexible wing is obtained from the
relation

The values of {l—?— &} calculated for the additional load

cor = on (g2 ) @
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or in dimensionless form

C
Zlom (ﬁ;) QRS

The wing 1ift coefficient defined by the relation

s
L, = - (33)

and the wing bending-moment coefficient defined by
W, ? R
‘ CBMW ~ gSb 3

may be obtained by integrating the load distribution. These integrations
may be performed conveniently by multiplying the cc 7 /Cr values by the

first rows of the [Kl] and [KEJ matrices, respectively. Thug

5/2 LIk | {CCZ} | (35)

o1 5/ L _, [ ] o " (352)

~and
- cey | |
e, < 55 g%[KQ_,l{C—r_} BES

o}
S

e S/2 QbIFéjl[ ] o1

I B

(36a)

el

&
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The lateral center of pressuré of the wing load g; may then be
W .
determined from the relation ~

¥ _ 2b CaMy |
5 = 5. Or,, (37)

The fore-and—eft location of the aerodynamic center of the wing load
measured rearward of the leading edge of the mean aerodynamic chord as
a fraction of the mean aerodynamic chord may be estimated from the
relation

4

(ac) y - Tma
w = ac + __.__._9 tan Aac (38)
C C
MAC MAC

where Aac is the sweep of the section-aerodynamic-center line.

For any other geometrical angle—of-attack distributions such as
those due to built—in twist or those due to rolling, the same section
lift—curve slope should be used as for the structural deformations, so

that m,

1
and (36). For the damping—in—roll distribution with a tip helix angle
of 1 radian

m
is replaced by mg and iéi is unity in equations (32), (35),
' 1

oc=1—iw—<1—l (3)

The rolling-moment coefficient due to the wing load is defined by

QM'
C7—w = ﬁl (+0)

It is seen to be twice the wing bending-moment coefficient.

The contribution of the wing to other stability derivatives may
be obtained similarly by integrating the load distributions due to the
angle—of-attack distributions caused by the motion under consideration,
as described in reference T; in the case of swept wings, particular care
muist be taken in selecting the proper angle~of-ettack distribution and
in accounting for the lateral inclination of the 1ift vector. (See
reference 4.)

If the aerodynamic loading or the stabllity derivatives are to be
obtained for a wide variety of flight conditions, it is comvenient to
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gystematize the calculations in the following manner: The aeroelastic
matrix is computed for both the subsonic and supersonic aerodynamic—
center values and iterated for both cases to obtain the subsonic and
supersonic values of the divergence parameter ap. From these values

the divergence dynamic pressure may be computed by means of equation (15)
and plotted against Mach number, as suggested in reference 3; on the

same plot values of the actual dynamic pressure may be plotted against
Mach number for verious altitudes of interest. Such = plot for a wing,
“the phyiical characteristics of which are given in figure 3, is shown in
figure 4.

Since at a given Mach number the ratio a/ap is equal to the
ratio q/qD, the range of a/aD values of interest may be established

from this plot for both the subsonic and the supersonic region. Several
representative a/qD values may then be chosen within the given ranges
and the corresponding values of a computed from the previously calculated
ap values. The aerodynamic loading is calculated for these values of a
using the appropriate LA] matrix and plotted in the form of .
-(ccz)f /(ccl) , with the ratio a/aD as a parameter. From these

w rw m
curves or from the —— & values the 1ift coefficients may be obtained

mel

in the form (CLle/(CL) and plotted against a/ap or q/qD; the
™v
other coefficients may be obtained and plotted in a similar form.

For any specific flight condition the wvalue of a/aD may then
be obtained from the plot of q and dp againgt Mach number. The

loading, 1lift coefficient, or other item of interest may be obtained
Prom the plots which give these items in terms of the rigid-wing values.
Once the rigid-wing values at the given Mach number are known, the
flexible~wing values may then be obtained immediately.

Tllustrative Example

In order to illustrate the method described in the preceding
sections, a typical swopt wing has been analyzed. The physical and
geometrical parameters of the wing are shown in figure 3 and the upper
part of teble VIII (which follows the form of table VI(a)). The
chord, elc2, and stiffness matrices have been obtained from the
given parameters and are shown in the lower part of table VIII.

. The calculation of the aerocelastic matrix for the subsonic case
has been carried out by means of the form of table VI(b). All but
three of the steps of the computation are shown in table IX numbered
in the same order as in table VI(b). Steps 1, 2, 6, T, 11, and 12
constitute matrix miltiplications, which are carried out in the order
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indicated; steps 5 and 13 constitute matrix additions or subtractions;
steps 3 and 4 constitute multiplications of matrices by congtants.

The aercelastic matrix is iterated in table X(a) (which follows
the form of table VII(a)) to yleld a value of ap = 52.208. From this

value and a value of ap computed in the same manner for supersonic

speeds, the divergence dynamic pressure has been calculated by means of
equation (16) on the basis of egtimated values of the effective 1lift—
curve slope. The variation with Mach number of the divergence dynamic
pressure, the actual dynamic pressure at sea level, and the estimated
offective lift—curve slope is shown in figure L. ' '

For a value of é%-: -0.25, such as would be obtained approximately

at a Mach number of 1.0, the aserodynamic loading has been calculated for
the additional—angle—of—attack case and the damping—in-roll case in
table X(b), which follows the form of table VII(b). The values of ag

for the damping-in—roll case have been calculated from equation (39).

The aerodynamic loadings, in addition to those calculated for other

q/q:D values, have been plotted in figure 5 ag ratios of the flexible—
wing loadings to the rigid—wing loadings. The curves have been integrated
to yield wing 1ift and rolling-moment coefficients as well as '

the aerodynamic center of the wing load, which are shown in

table X(b) for the case of 517= —0.25 and which are plotted against

: . ap
-3 in Pigure 6.
' q.D

The wing 1ift coefficient is defined in such a mamner that if
the fuselage 1ift is known and made dimensionless by dividing by 4
and S the resulting fuselage 1ift coefficient may be added directly -
to the wing 1ift coefficient. This definition and the fact that
figure 5(a) is plotted over the fraction of the wing-elone span sy

explain the fact that the area under the curve of figure 5(a) is not 1.
The aerodynamic center as plotted in figure 6 constitutes the center

of pressure of only the wing load. In order to obtain the airplane
aerodynamic center, the magnitude and center of pressure of the fuselage
load would have to be known and taken into account.

DISCUSSION

Both the merodynemic and the structural assumptions mede in this
analysis are more realistic than those made in reference 3.  The device
employed in this analysis of calculating the air forces for wing sections
parallel to the direction of flight and then transferring them to
sections perpendiculer to the elastic axis obviates the necessity of
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replacing the actual wing with one the root and tip of which are
perpendicular to the elastic axis for the purpose of amalysis. Further—
more, the inclusion of Falkner®s modification (see appendix) in the
integrating matrices has the effect of rounding off the load distribu—
tion approximately in the mamner observed at subsonic speeds. At
supersonic speeds the load distributions do not go to zero in the manner
assumed in Falkner's modification, but even at supersonic speeds there
1s some reduction of load at the tip, the total magnitude of which is
not far from the reduction obtained by Falknerts modification.

Only one aerodynamic assumption is still made: that induction
effects may be approximated by an over—ell reduction of the strip theory
loading (rounded off as previously described) at subcritical gpeeds and
may be neglected at supersonic speeds. The effects of aerodynsmic '
induction could be taken into account more accurately by using aero—

dynamic influence~coefficient matrices instead of the effective 1ift—
o]

: v ' e
curve—slope concept and the [gi] and 1 éf{) matrices used in
. r el

‘this analysis. Available methods of calculating such influence coeffi-

cients for wings of arbitrary plan form at subsonic and supersonic speeds,
particularly those suitable for wings with large amounts of sweep, are
either too inaccurate or too time—consuming for practical purposes,
however.

Although the analysis of this paper has been performed for wings
congigting of uncambered sections, it is directly applicable as well to
the determination of the additional loading of wings with cambered
gsections. The loading of such wings due to the section pitching moment
at zero 1ift may be determined by modifying the analysis somewhat.

The asgumption of‘&n effective root perpendicular to the elastic
axis made in reference 3 for the purposes of calculating the structural

‘response 1s carried over in this analysis. It is modified, however,

to the extent that the root is no longer considered to be rigid as in
reference 3, but flexible, both in torsion and bending. It has been
demonstrated in reference 5 that the deflections of a swept beam may be
egtimated on that assumption, provided the root—rotation parameters are
known. By assuming the effective root at the intersection of the elastic
axis with the side of the fuselage, the root bending due to bending

moment and root twist due to torque are minimized. The bending due to
twist and twist due to bending are the same regardless of the location of
the effective root.

The method of introducing the root rotations into the analysis by
meens of the IQ] matrix assures that the structural twist in planes
parallel to the direction of flight is zero at the fuselage. From
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. figure 2 it is seen thet the local values of the root rotation either
tend to approach zero at the root or tend to cancel each other. If the
root—rotation constants are known, the structural deformations can there—

fore be predicted quite accurately by the assumptions made.

The manner in which the equations of equilibrium are solved by
means of the integrating matrices accounts for the true chord and
stiffness variations. It does not necessitate replacement of the
actual wing by constant—chord segments with all the flexibility
concentrated at the ends of the segments, an approach which has been
used extensively in the work on aeroelastic problems of straight wings.

A further refinement which obviates the necessity for msking any
gtructural assumptions other than that of small deflections is the use
of measured influence coefficients in the aeroelastic enalysis. Wherever
such coefficients are available it is, of course, of advantage to use them.

No explicit account has been teken in the analysis of the effects
of the inertia loading on the structural deformations and hence the
aerodynamic loading. On swept wings, in particular, their effects
may be considerable. For the purposes of this analysis, however, the
structural deformations due to inertia loading may be considered part
of the geometric angle of attack and the rigid-wing geometric angle of
attack may be modified accordingly. The deformations due to the inertia
loading may, incidentally, be calculated conveniently by means of the Ky,

K, and K3 matrices. ‘ :

Some of the general observations made in reference 3 concerning the
divergence phencmenon are corroborated by the example. As expected of
a wing with a considerable amount of sweepback, the divergence dynamic
pressure is negative. Consequently the wing cannot diverge. The
divergence dynamic pressure is useful as a reference value, however;
the values of the load distribution and the stabllity parameters divided
either by the corresponding rigid-wing values or by the section 1ift—
curve slope depend only on the ratio of the actual to the divergence

dynamic pressure.

The type of plot shown in figure 4 is therefore quite useful in
the analysis of aeroelastic phenomena. As pointed out in reference 3,
this chart may also be used to estimate the actual divergence dynamic
pressure where there is a possibility that the wing may diverge. It
appears that the critical values will occur at either extremity of the
trensonic region. In the transonic region proper the lift—curve slope
usually appears to be lower than at the extremities, so much so that the
decrease in lift—curve slope even tends to overbalance any forward
shift in aerodynamic center. :

As would be expected qualitatively, the effect of wing flexibility
in the case of the example wing is to unload the wing tips owing to the
fact that they bend up. The 1ift carried by the wing is therefore less
than that carried by a rigid wing, the center of pressure being farther
inboard and the aerodynamic center farther forward.
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The difference between the supersonic snd subsonic values of the
. loading, the 1ift and rolling-moment coefficlents, and the aerodynamic
center for a given value of a/aD is due to the difference in the

e; distributions. If the distributions were the same, the subsonic
and supersonic variations of these quantities with a/aD would colncide

despite the difference in the o7 values.
r

Another item of possible interest is the fact that the veristions
of the parameters dp and ap for the example problem are approximately

linear (see fig. T7), as would be expected from the results of the
analysis of reference 3. The deviations from linearity are most pronounced
near the points for 4 = 0 (that is, A = 0°). They are due to the effects
of the root rotations, in particular, the bending due to torsion and torsion
due to bending; these effects were neglected in the approximate analysis of
reference 3. The points of figure 7 correspond to the example wing and
the wings that would be obtained by rotating the example wing to the
unswept and 37.5° sweptforward positions in such a manner as to keep the

€] Cp COS A (ET)
parameters L > L ag well ag the chord, stiffness, and

8p (GJ)r

moment—erm (e7) - distributions constant. Polnts are shown for both the
subsonic -and supersonic veriations as well as for the case when e =0
over the entire span (ap = 0). The difference between the subsonic and

supersonlc lines is due entirely to the difference in: the ey distribu—
tion; if the distributions were the same, ag would be the case if the
elastic axis were at a constant fraction of the chord, the variations
would be the same, regardless of the difference in the elr - values.

The present analysis is concerned only with wing or tail loads;
the total loads are obtained by adding the fuselage loads (which may
be assumed to be unaffected by flexibility) to the wing or tail loads
obtained from the analysis. The amount of load carried by a flexible
wing and the mamner of its distribution cen consequently be estimated by
the method presented herein if the contribution of the fuselage is known
at low dynamic pressures, that is, for the "rigld-wing" case.

The fuselage has & considerable effect on soms of the stability
parameters as well, although in the case of others, such as Czp,'the

effect is negligible. Other effects that may have to be accounted for
in calculating stability derivatives are the boundary-layer behavior
and tip suction. The boundary—layer effect may be accounted for by
using a section lift—curve slope corrected for boundary-layer effects
to calculate the angle—of-attack distribution of the flexible wing at
the flight conditions of interest and then obtaining the 1ift and drag.
distributions corresponding to that angle—of-attack distribution.
Lateral tip suction may be important on low-agpect-ratio and highly
swept wings. Since it does not affect the 1ift distribution, it may be
taken into 'account by calculating the angle—of-attack distribution of
the flexible wing and estimating the tip suction corresponding to the
actual angle of attack at the tip. 4
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Tn calculeting stability derivatives it is well to keep in mind
that the method presented in this paper is based on a modified strip
theory, unless aerodynamic influence—coefficient matrices are used. The 7y
calculated derivatives may therefore be somewhat in error, particularly :
if in calculating them the moment of a load distribution has to be
. determined. If there is reason to suspect that the modified strip
theory is inadequate for calculating a given derivative, the derivative
may be calculated for the rigid-wing case by & more refined method; the
results calculated by the method of this paper may then be used to
correct the accurate rigid-wing value for the effect of structural
flexibility.

CONCLUDING REMARKS

A method has been presented for calculating the aerodynamic loading,
the divergence speed, and certain stability derivatives of wings and
tail surfaces of arbitrary plan form and stiffness. Provisiohs have
been made for using either stiffness curves and root—rotation constants
or influence coefficients in the structural part of the analysis. Strip
theory with over-ell reduction and rounding off at the tip to take
account of aerodynsmic induction have been uged for the aerodynamic part
of the analysis. Computing forms, tables of numerical constants required _
in the analysis, and an illustrative example are included to facilitate .
calculations by means of the method.

Langley‘Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Alr Force Base, Va., December 2, 1948
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APPENDIX

SUMMARY OF MATRIX ALGEBRA PERTINENT TO THE ANATYSIS

For the convenience of the reader unfamiliar with matrix terminology,
a summary of matrix definitions and methods is presented in the following
gections. For a more complete discussion of matrix methods ths reader
is referred to any text on matrices, for instance reference 8.

Definitions

A matrix is a rectangular array of numbers, called elements, written
down in rows and colums. A column matrix consists of a single columm,
a row matrix of a single row. A sguare matrix has as many rows as it
has colums. The diagonal of a square matrix from the upper left to the
lower right is called the principal diagonel. A matrix all the elements
of which are zero except for those on the principal diagonal is called a
diagonal matrix. If all of these elements are unity, the matrix is
termed the unit matrix.

Matrix Algebrea

Addition.— Two matrices can be added or subtracted if both have the
same number of rows and columms. The addition or subtraction is carried
out by adding to or subtracting from each element of the first matrix
the corresponding element of the second matrix.

Multiplication by a constant.— A matrix is multiplied by a constant
by multiplying each element by that constant.

Matrix multiplication.— Two matrices can be multiplied by each other
if the second has as many rows as the first has columms. The elements
of the resulting matrix are obtained by multiplying the elements in the
corresponding row of the first matrix by those of the corresponding
colum of ths second matrix in the following order: The first element
of the row is multiplied by the first element of the column, the ‘second
by the second, and so forth. The sum of the products obtained in this
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manner is the value of the element of the product matrix. Schematically
this process may be illustrated as follows: : :

1 2 3 k 5 6 1'2'3'#'5'6, 1 2 3 k4 5.

1 A
2lalb|lcldle ]| T B Q
‘3 X C =
4 Dy
[=] [M}—— (] 2]
5 E
6 , ; » F

Q= aA + bB + cC + dD + eE + fF

Tt muet be emphasized that in multiplying matrices by each other their
order jis of importance. As the two matrices under congideration are
written the matrix at the left (the m matrix) is said to be post—
multiplied by the other, (the M mstrix); or the M matrix may be said
to be premultiplied by the m matrix, in order to distinguish the manner
in which they are multiplied. If the two matrices were written in the
reverse order snd then multiplied according to the foregoing instructions,
that is, if the [M] matrix were postmultiplied by the.[m] matrix, the
olement of the second row and fourth column of the product matrix [M][m]
would clearly not have the value Q in general, nor would, in general,
any other element have the value it would have if the two matrices were
mltiplied in the order shown. Consequently it is important to observe
the order in which the matrices are written down in the computing
instructions. .

Matrix iteration.— The purpose of iterating a square matrix is to
determine the columm matrix or metrices which, if postmultiplied by the
given square matrix, yield the same columm matrix except for a constant
miltiplier. It is the value or values of these miltipliers which
constitute the desired characteristic values of the matrix. .

The iteration is carried out by assuming a "trial" columm (the
column shown in taeble VIT is convenient for the purpose of this analysis)
and premultiplying it by the given square matrix to yleld a "result"
colunm. The elements of the result column including the last are
divided by the last element of the result columm and entered as a
second trial colum. The second trial columm is then premultiplied
by the square matrix to yield a second result colum. The procedure 1s
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repeated until the same value (within the desired accuracy) is obtained
twice in succession for the last element of the result matrix. The
reciprocal of this value is the desired (lowsst) characteristic value
of the matrix, that is, the lowest critical value of ap, in the
snalysis of this paper.

Another way of estimating a first trial column in this analysis _
is to add the elements in each row of the A matrix, enter the six sums
-in the first result columm, and treat them as if they had been obtained by
multlplylng the A matrix by a first trial columm.

Derivation of the Integrating Matrices

Although familiarity with the derivation of the integrating
matrices is not essential to the application of the method of this
paper, an outline of the derivation is presented because of ite general
interest.

The integrating matrices used in this paper are based on the same
concept as Simpson's rule — replacement of the actual function which is
to be integrated by parabolic segments. If the function y has the
values Yp—1s Yo, @nd yp.1, respectively, at the equally spaced

points X1 ¥n, and X437, the following relatlions are seen to be

true for a second-—degree parabola péssed through the three known points:

R R L R R T UCEE VoG
f:ly x = (3 &)y + (o0, *G “)yn;l’ e
e (e G Gdn )

GG (@

Xn-.
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fxml(x —xp)y dx = (- -13- &2>5"n—-1 + (0)y, + @- Z\.'x2>yn+l (a5) .

Xn—1

[ Ch D (s G 09

where

Ax = Xy —Xpg = Xp,q — Xp _ | (a7)

The different integrations over the parabolic segments may thus
be performed by multiplying the given ¥y values by the multiplying
factors indicated in equations (A2) to (A6), :

Since load distributions at subsonic speeds go to zero with infinite
glope at the tip and the ordinary second-degree parebola furnishes a
poor approximation to such a distribution, V. M. Falkner has suggested
that a curve of the type

y= Ao+ Al(l —'1)1/2 + Ax(1 - x)3/2 (a8)

be passed through the last three points of the load—distribution curve
at the tip (x = 1). On the basis of the approximation, relations
equivalent to equations (Al) to (A6) may be derived. The multiplying
Pactors for the last two segments are then based on these equivalent
expressions rather than those of equations (A2) to (A6).

The integrating factors of equations (A2) to (A6) may be assembled
directly into integrating matrices. The K3 matrix, for instence, is

set up to perform the integration f xy dx. If at the upper limit x = 0.1

and if tie ten—point matrix (table TII(b)) is to be used, the factors 0.04167,
0.06667, and —0.00833 may be obtained from equation (Ak) since x, 3 =0,

Xp = 0.1, and Ax = O.l1; similarly, if for the same case the Integration

is extended to xp43 = 0.2 as the upper limit, the integrating factors .
0.03333, 0.13333,.and 0.03333 will be obtained from equation (a2).

These factors co@stitﬁté;the second and third rows of the matrix Kj;

since the inteégrations aré independent of the y values other than the .
first three, the other y ‘values are multiplied by zero in these two

‘rows. In order .to extend the integration to x = 0.3 an integration is

N
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again performed up to x = 0.2 and another integration, using another
parabolic segment, is performed from x = 0.2 to x = 0.3. For the
latter integration Xp = 0.2, x, = 0.3, and Ax = 0.1, so that
equation (Ak) again ylelds the factors 0.04167, 0.06667, and —0.00833.
The y value at x = 0.2 1is therefore assigned a mltiplying factor
of 0.03333 by the first integration and a factor of 0.04167 by the
second, or a total factor of 0.07500. The resulting factors are
entered in the fourth row of the K3 matrix. All other rows are

obtained in a similar manner.

O

. ‘ _ 1
The K; matrix is set up to perform the integration \/P y dx. The
‘ bd

‘values of the last row of the ten—point K, matrix (table I(b)) are

obtained from Falkmert!s equivalent of equation (A3) for the curves
asgumed 1n reference 5, with x . = 0.8, x, = 0.9, x,.7 = 1.0, and

Ax = 0.1, Only the miltiplying factors for the y wvalues at x = 0.8
end x = 0.9 are listed, since the y value at x = 1.0 (the wing tip)
is assumed to be zero in this analysis, so that its multiplying factor

is immaterial. The values of the last row but one are obtained similarly
from Falkner's equivalent of equation (A2). The values of the row

for ék = 0.7 - are obtained by using equation (A3) in the interval
x=0.6 to x=0.8 and Falkner's equivalent of equation (A2) in the
interval x = 0.8 to 1.0. Similarly the row for ék = 0.6 1is

obtaiﬁed by combining the results of equation (A2) for the interval x = 0.6
to 0.8 with Falkner's equivalent of equation (A2) for the
interval x = 0.8 to 1.0. All other rows are obtained in a similar

manner.,

: 1
The Ké matrix is set up to perform the integration ‘jp (x - xo)y dx,
. x |

where x 1s the variable of integration and x_ ‘the value og x at
the lower limit. In applying the integrating factors of equations (A2)
through (A6) to this integration it must be realized that

Ja -y are Gm-x) frax+ fix-nly ax )

so that the integrating factors for this integration would be obtained

by adding (%, — x,) times the factors of equation (A2) or (A3) to

the factors of equation (A5) or (A6), respectively, depending on the

limite of the integration. The factors for the different

segments (x = 0.8 to 1.0, 0.6 to 0.8, and so forth) are then combined

for any given row (with its given value of Xo) in the manner indicated for
for the K3 matrix to yield the Ko matrix.
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The Ku metrix sums up the torques outboard of a given point,

while the Ks matrix gives the sum of the moments of forces applied

outboard of a given point. Neither requires any iﬁtegrations in the
sense of equations (A2) to (A6). For the slx—point method these two

matrices are:

" o -
’ y/s,|0.2 0.k 0.6 0.8 0.9 1.0| [y/s,| 0.2 0.k 0.6 0.8 0.9 1.0
0 i 1 1 1 1 1 o |o.2 0.k 0.6 0.8 0.9 1.0
o2fo 1 1 1 1 1 o2l o .2 4 6 .7 .8
o.kj o 'o 1 1 1 1 ok} o 0 .2 ,‘h 5 .6
06lo o o 1 1 1 06l 0o o o .2 .3 .4
0.8lo0 o o o 1 1 08l 0 o o o. .1 .2
09lo o o o o 1 o9lo o o o o .1
Tt will be noted that the moment arms which comprise the matrix are

~ fractions of sy, so that the matrix must be multiplied by the length s
in order to yleld actual moments as stated in equation (21).
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TABLE I.— VALUES OF THE INTEGRATING MATRIX [3i]
(a) Six—Point Solution
nfspl O .2 L .6 8 1 -9

0 0.06667|0.26667] 0.13333{0.26667} 0.093330.15085

.2 [—.01667] .13333] .15000| .26667] .09333| .15085

A Jo 0 L0666T| 26667 .09333] .15085

6|0 0 —.01667| .13333| .11000| .15085

.8 lo 0 0 lo 02667 .15085

9o 0 o 0 -.01886| .09333

(b) Ten—Point Sclution
nfs,] © o1 o2 .3 A .5 .6 . .7 .8 .9

0 10.03333]0.133330.06667|0.13333 |0.06667]0.13333 0.06667 0.13333|0.06000 |0.15085
.1 |-.00833] .06667| .01500| .13333| .06667| .13333| .06667| :13333| .06000| .15085
.2 10 0 .03333| .13333| .06667{ .13333| .06667| .13333| .06000| .15085
.3 {0 0 -.00833]| 06667 .07500{ .13333| .06667| .13333| .06000| .15085
4 fo 0 0 0 .03333| .13333] .06667| .13333] .06000] .15085
.5 |0 0 0 0 —.00833| .06667| ".07500| .13333] .06000] .15085
6 |0 0 0 0 0 0 .03333| .13333| .06000} .15085
.7 |0 0] 0 0 0 0 —. 00833 .06667' .06833} .15085
.8 |0 0 0 0 10 0 0 0 026671 15085
.9 |0 0 0 fo 0 0 0 0 —.01886| .09333

'*‘II!E;!I”
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TABLE IT.— VALUES OF THE INTEGRATING MATRIX [ f{e] .
(a) Six-Point Solution
/s, 2 o 6 .8 .9
0o jo 0.05333]0.05333{0.16000]0.07314 |0.13792
-2 [=.00167| .01000 .02500| .10667 054481 10775
A0 0 0 .05333| .03581| ;07758
600 0 —.00167| .01000| .01548| .O4Th1
B0 0 0 o] —.00152] .0172k4
9]0 0 o} 0 —-.00108| .00419
(b) Ten—Point Solution
/s, 0 ol .2 3 o4 5 o6 T .8 .9
0 0 0.013333 | 0.013333 | 0.040000 | 0.026667 | 0.066667 | 0.04L0000 0.093333 0.046476 | 0.137920
o1 | =.000427 | .002500| .006251 | .026667 | 020000 | .053333| .033333| .080000 JOLOWTE | .122835
210 0 o .013333 | .013333 -040000 | .0R6667 | 066667 | 034477 | .107750
3]0 (o] —.000417 [ 002500 | .006251 | .026667| .020000| .053333| .028476 . 092665
Lo 0 0 0 0 +013333 | .013333 | .OLOOOO | .022476 | .077580
S| o 0 0 0 —.000417 | .002500 | .006251 .026667 L016L77 | 062495
6o 0 {o 0 0 0 0 .013333 | .O10476 | . ,O4T410
T 10 0 0 o 0 0 —.000417 | 002500 | .00k0GO [ .032325
8|0 0 0 0 0 0 0 0 —.001523 | .017240
9o 0 0 0 0 0 0 0 —.001077 | . 004190
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TABLE III.— VALUES OF THE INTEGRATING MATRIX [K3]

(a) Six—Point Solution

n/s, 0 .2 o4 .6 .8 .9
o o 0 0 0 0 0

2 .08333| .13333 | —.01667|0 0 0

A | 06667 26667 | L0666T|0 0 0

.6 06667 | 266671 .15000] .13333|—.01667|0
.8 06667 | 26667 | .13333]| .26667] 066670
.9 06667 26667 | .13333] .26667| .10833| 06667

(b) Ten—Point Solution

.1 .2 3 b .5 6 .7 .8 .9
0 0 0 0 0 0 0 0 0
.06667|-.00833 |0 0 0 0 0 0 0
.13333[ .033330 o 0 0 0 0 0
+13333| 07500 06667 {~.00833]0 0 o] 0 o]
.13333| 06667 .13333| .03333[0 0 0 0 0
.13333| .06667| .13333| .07500| .06667|-.00833/0 . |0 0
.13333] .06667| .13333| .06667| .13333]| .03333[0 0 0
«13333} .06667| +13333| .06667| .13333 -07500 .06667|—.00833|0
13333 .06667| .13333| .06667| .13333] .06667| .13333| .03333|0
.13333] .06667| .13333| .06667| .13333| .06667| .13333 .07500| 06667




NACA TN No. 1876 37
TABLE IV.— VALUES OF THE LOAD-CONVERSION MATRIX [Kg]
(2) Six~Point Solution
/s 0 .2 4 .6 8 9
0.2 0;08333 0.13333|-0.01667/0 0 o]
o4 [-.01667( .13333] .08333(0 o] 0
610 0 08333 .13333|-.01667|0
8]0 0 —-.01667| .13333| .08333|0
9o 0 0 0 L04553] L05752
1.0 |0 0 0 0 —.01886 .09333
(b) Ten—Point Solution
a/sp| © .1 .2 3 A 5 6 o7 .8 9
0.1 |0.04166|0.06667|-0.00833|0 0 0 0 0 0 0
2 [-.00833] .06667| .04167|0 0 0 0 0 0 0
.3 |0 0 <04166{ .06667|~.00833|0 0 0 0 0
o4 jO 0 —.00833( .06667| .O4167[0 0 0 0 0
5 {0 0 0 0 +04166] .06667|—-.00833|0 0 0
6o Jo o o -.00833| .06667| .04167|0 0 0
.7 [0 0 0 0 0 0 <0L166] .06667(-.00833|0
8 |0 0 0 0 0 0 —.00833| .06667| .04167(0
9 |o 0 0 0 0 0 0 0 <O04166(0
“[tojo o 0 0 0 0 0 0 ~.00833| .09333|
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TABLE V.— VAi,UES OF THE LOAD—CONVERSION MATRIX [K-?:l

(a) Six—Point Solution

n/sp o o2 o4 .6 .8 9

0.2 | 0.01667 | 0.16667 | 0.01667 |0 |0 |

A —.06833 .05000 | ~.11667 | .05000 | —.00833 | O

6 |0 0 L01667 | .16667| .01667| O

8 o 0 —-.00833 | .05000 .089u6 .02035

.9 |0 ) 7 :o 0 .00631| .08860
1.0 |0 0 0 0 —.01077| .04190

(b) Ten~Point Solution

n/spl  © A | .2 .3 b .5 .6 7] 8] .9
0.1 [0.00833|0.08333]5.00831{0 o 0 0 10 lo 0

.2 |—.00417] 02500 .05834| .02500|-.00417|0 10 0 0 0

.3 10 0 .00833| .08333] .00833|0 0 0 o] 0

A |0 0 —.00417| .02500| .0583u4| .02500 —. 00417 0 0 0

5 |o 0 0 0 .00833| .08333| .00833[0 |0 0

.6 o 0 0 0 —.00417| .02500| .05834| .02500(-.00417|0

.7 10 0 0 0 0 0 | .00833| .08333] .00835|0

8]0 0 0 o 0 0 -.00417| .02500[ .06029 ';02035

910 0 0 o] 0 0 o] d .00631 .08860
1.0 |0~ o |o 0 0 0 0 0 —~.01077| .04190

"‘Il!!li!ll"'
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TABLE VI.— FORM FOR COMPUTATION OF AEROELASTIC MATRIX

(a) Wing Parameters

A= S = W o= %T =
A= b= C = % = QqJM =
tan A = SA = acsb Q‘PT=
cos A = 8, = 8y cOS A = 8Cgpn QFM=
n/sp n c e ®oub o1 - GJ ET
0
.2
4
.6
.8
-9
] [
n/s5, 0 .2 B .6 .8 .9 n/sa 0 .2 ok .6 .8 .9
0o |1.000 | 0 0 0 0 0 0 0 0 0 0 0 0
.2 0 0 0 0 0 .2 1 0 0 0 0 0
A 0 0 0 0 0 4 1 0 0 0 0 0
.6 0 0 0 o| o .6 1 0 0 0 0 0
.8 0 0 0 0 0 .8 1 0 0 0 0 0
.9 0 0 0 0 0 .9 1 0 ol o 0 0
«:J_»] [<_EI£
| &T L
n/sp 0 .2 N .6 .8 .9 LYCIN 0 .2 oA .6 .8 .9
0 [1.000{ o 0 o | o ) o |1.000]| o 0 0 0 0
.2 0 o 0 0 0 .2 0 0 0 0 0
A o o 0 0 0 R o 0 0 0
.6 0 0 o o 0 .6 0 0 0 0 0
.8 0 o 0 0 0 .8 0 0 0 0 0
.9 0 0 0 0 0 .9 0 0 0 0 0
El_(i>2_ [EL i)a]
1, \°r. Jsub ®1, \°r. spr
We,] o |2 |4 |6 .8 nea] © |2 | & | 61 .81 .9
0 | 1.000 { o 0 o | .o 0 1 o |1000] o 0 0 0 0
.2 0 0 0 0 0 .2 0 0 0 0 0
o 0 0 0 0 0 A 0 0 0 0 0
.6 0 o | o 0 o .6 0 o 0 0 0
.8 0 [ 0 0 0 8| o 0 0 0 0
.9 0 0 0 0 0 .9 0 0 0 o | o

39
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TABLE VI.— FORM FOR COMPUTATION OF AEROELASTIC MATRIX ~ Continued

(b) Computing Instructioms

P
® e [e] o &gl
nfsp| © .2 A .6 .8 .9 n/spaf © .2 o .6 .8 .9
ol o [ 0 o o | o -0 [o.06667
.2 |.08333 [} [ [+] .2 —;01667
b | L6667 0 0 o & 0 o
6 | 06667 . 4] .6 [ [
.8 | .06667 : [+] .8 0 [ 0 3}
.9 | .06667 941 o 0 0 0
® [ 2] ® (6] [@]
nfsp| O .2 A .6 .8 .9 n/sal O .2 o .6 .8 9
=1 of o 0 [ 0 0 0 of o 0 0 0 0 0
2 [.08333 0 0 0 .2
A | 06667 0 0 0 4
.6 | 06667 [+] .6
.8 |.06667 0 .8
.9 | .06667 9
® e ([0 ' i@
nfsp| 0 .2 i 6 8 9 n/ep| O .2 o 6 .8 9
ol o 0 0 [ [ [ o] o 0 [ 0 0 0
.2 o 0 0 .2 o 0 0
A 0 o o 4 0 0 0
6 (] 6 [}
.8 o .8 [
9 9.
%%f A= - Eg;: '——elrc:{i:o-s_j\ tand =
® Ty S I ® ]
nw/en| O .2 4 .6 .8 9] - n/ep| © .2 o4 .6 .8 9
ol o ° 0 0 0 o ol o 0 0 [ 0 0
.2 0 o 0 o 0 .2 0 0 0 0 0
- o 0 0 0 0 A 0 [ 0 0 0
.6 [ 0 [ 0 0 .6 0 0 0 0 o
.8 0 o 0 0 0 .8 0 0 0 [ 0
9 0 0 0 0 o .9 0 o 0 0 0
3‘!;(0"‘13 — Qoy ten A>= - % elrc:Acos Ty =
® @ - @) « [@] ® [®] - 6]
nfspl © 2 o .6 .8 .9 n/sy| © .2 &% .6 .8 .9
o] o o 0 o o] o of| o 0 o 0 0 0
.2 . 0 o 0 .2 o 0 o
" 0 0 0 " 0 0 0
.6 o 6 [}
.8 ] .8 [
i
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TABLE VI.~ FORM FOR COMPUTATION OF AERCELASTIC MATRIX - Coﬁcluded

(b) Computing Instructions — Concluded

Supersonic Case

3
ey c
& ] [ (=) lpr
/sl 0 2 o 6
0 [0.06667
Subsonic Case 2 [~.01667
M 0 0
o =[] :
/5 0 .2 ob .6 .8 9 - 0 2
- - 8 o o 0 0
2 |-.00067 A - —
N 0 0 ] [o] . @ [@ [69:'
P 0 0 n/saf 0 -2 W -6
8| o ° 0 °
o| o o 0 0
9 0 0 0 0 .2
@ @ (6] -
n/sa| O 2 4 .6 -8 -9 -6
0 0 0 0 0 ° 0 -8
.2 ?
" (1) swp
y @ (®3r)spr [@]
n/sA o] .2 W4 .6
.8
0 0 o ° 0
.9 .2
%) []- @] - [@) -
Jen| O | -2 | e [ 8 | w0 6
o| o 0 0 ° ° ° ad
2 2
" | (elr)sub=
v : (1) gpr
- g [-@]- e
.9 n/sy| O -2 o -
o] o 0 o] o
.2
m
.6
.8
-9
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TABLE VII.— FORM FOR SOLUTION OF AEROELASTIC EQUATION
(b) Asrodynamic Loading
{a) Divergence
A - a.=
ap —
[2] [E3-am] |
nfey] o) .2 Al 6| 8] o el o 2| o 6 | 8| w9 {a.s}a {a.s}p ‘ {GBL
o] o 0 0 0 0 0 0|1.0000 | o 0 0 0 0 1
2 .2 1
R b 1
.6 .6 1
.8 .8 +1
-9 -9 1
" Auriliary matrices
{“s} 0 |1.0000 | O 0 a 0 0 1.0000
| @ (3) (%) (5) (6) .2
b
0 0 0 0 0 0 0
.6
2 | .3000
.8
o +5000
.9 -
.6 7000
.8 +9000| Final metrices
.9 1..00001.0000 [1.0000 {1.0000]1.0000|1.0000 {,_,,e _}. o _} {me a} »
) ] =2 L7 e -
'Lxljl[c/cr:l "ol ad {mel D) el .
o [ [ [ [ 1 |
()=}
]
W@ ®[®] 6] 6. (meae/e]
o] T T T"T T 1
0 o 0 0 0 o 0
' 2
b
6 L@)J{ﬁ'—;; a} | o a}p - L@J{,’:{I  p—
.8
3 ofd, - — | o — @] —
8D T e
- ¥
ot | gt | o —  |ar——
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ot TABLE VIII.~ PARAMETERS OF EXAMPLE WING

43

A=1 s = 37498 wo=22.4 O‘PT=°
. A = 37.5° b = 387.4 G = % = 96.8 Gy = O-10
tan A = 0.7673 55 = 218.9 ac . = 0.25 QPT = 1.60
cos A = 0.793% 8y = Bp COBA = 173.7 805y = 0.425 Qpyy = 0425
n/sa n c e ®loub elspr GJ EI
0 0 122.5 0.k522 0.202 0.0272 6.56 x 109 7,02 x 109
.2 43.8 110.8 4493 .199 .0243 5.79 6.28
A 87.6 99.3 TS .197 .0219 3.13 3.65
.6 131.3 87.7 AR .194 L0194 1.49 1.8
.8 175.1 76.2 4420 .192 .0170 .68 o9k
.9 197.0 70.3 .4hot .191 .0157 42 .6l
] %]
/s, 0 .2 A .6 .8 [ .9 /sy | 0 .2 A .6 .8 9
0 | 1.000] o 0 0 0 0 0 0 0 0 0 0 0
.2 o |[.905 0 0 0 0 .2 1 0 0 0 0 0
4 0 o |.811 0 0 0 4 1 0 0 0 0 0
.6 0 0 o | .76 0 0 .6 1 0 o o 0 0
- .8 0 0 0 0| .622 0 .8 1 0 0 0 0 0
.9 0 0 ) 0 0o | .57 .9 1 0 0 0 0 0
‘ Y ET _
nen| 0 ]2 | & |6 81 5 s ] 0 |2 | k-] 6 |81 9
0 [ 1.000( o0 0 0 0 0 0 [ 1.00 0 0 0 0 0
.2 0 [1.13 0 0 0 0 .2 0 Lie 0 0 0 0
A 0 0 |2.10 o 0 0 e 0 o 192 0 0 0
.6 0 0 0 |40 ) 0 .6 0 0 0 |37 0 0
.8 0 0 0 o |9.64) o .8 0 0 0 o |7a7| o
.9 0 0 0 0 0 | 15.61 .9 0 0 0 0 0 | 10.96
2
[elr (Fc;) jsub gt(cir) :Lpr
Wan] O |2 | & |61 81 5 en] o |2 ] a6 T8 3
o | 1.000] o 0 o 0 0 0 |1.000| o 0 o | 0 0
.2 o |.806 0 0 ) 0 .2 o |.732 0 o | o 0
. A 0 0o .62 | o ) 0 A 0 0 |[.530 0 0 0
.6 0 0 0 |[.ho2 0 0 .6 0 0 0 | .366 0 0
.8 0 0 o-| o [ .38 0 .8. 0 0 0 o |[.oy2 0
- .9 0 0 0 0 0 | .312 .9 0 0 - o 0 0 [ .190
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TABLE IX.— COMPUTATION OF AEROELASTIC MATRIX OF EXAMPLE WING

(SUBSONIC CASE)

- = =
® ] e (][ 26)],.,
n/sp (] .2 o .6 .8 .9 n/sy o] .2 R .6 .8 .9

0 0 0 0 0 0 0 0| 0.08667 |0.2149k [0.08560 | 0.13120 [ 0.03435 | 0.0kTOT
.2 | .08333 15066 | —. 03501 [+] 0 0 : .2 | —.01667 | 10746 ©.09630] .13120] .03435| .0uTO7
S| 06667 .3013% | .14001 0 0 [ Rh [¢] [¢] L0280 .13120| .03435| .OWT07
.6 | 06667 .30134 | .31500| .58665| -.16070 o] .6 o] o |-.01070| .06560| .ohoW8| .O4TO7
8| 06667 | .3013%| .27999( 1.17335| .64270 0 .8 0 0 0 0 .00981| .ohT07
.9 | 06667 .3013% -27999 1.17335( 1.04430 | 1.04072 ‘ .9 0 (o] 0 [ —,0069k | .02912
® [x5] [%i—)‘] @ ' [el[e)]
n/sal (] .2 ob .6 .8 .9 n/54 0 .2 R .6 .8 .9

0 0 0 0 0 0 0 0 o- o 0 o | o 0
.2 | .08333 14933 [ —. 03201 [¢] ] (] .21 —.00613 | 01777 | .01728| .o01922 .00503| .00689
A} .06667 29867 | .12801 0 0 o] A4 o~-01173 | 03724 | .0u875) .0B089| .02118( .02902
.6 | 06667 29867 | .28800( .houés5| —.12452 0 6| -.01173 | 03724 | .05082| .1717h| .06273( .O710k
.81 06667 26867 .25599| .98935] .u9B02 [¢] 8| —0o1273 | 03724} .03938| .22138( .10693] .16293
.9 | 06667 .20867 | .25599] .989351 .80923 | .73070 .9 | —.01173 | .03724 | 03938 .22118| .10254% | .23190
o Bl @ © ][]

/8y 0 .2 W .6 .8 .9 n/s4] [¢] .2 A .6 .8 .9

0 0 0 “o 0 0 o 0 0 0.04826 | 0.04325 [ 0.11456 | 0.04549 | 0.07917
2| .ous85 | .08216 | -.01761 o o 0 2| ~.00167 | .00905 | .02028] .07638| .03389| .06185
L] .03668 .1&33 .07043 0 [¢] 0 A [ 0 [¢] .038181 .02227| .OWk53
6| .03668 16433 | 15846 .27216 | ~.06851 | (o] .6 [¢] 0 ~.00135 00716 | 00963 .02721
8| .03668 16433 ] .14085| JSBE34 ] .2ThOL 0 .8 [ o' [+] 0 ~.00095 1 .00990
.9 | .03668 ,16433 | L14085) .5hh34 | JMAs2h | .L0203 .9 ¢} 0 o] o] —.00067 | .00241

%ﬁ tanA = 0.5502 , ®@ (@] [@]

= () [o] 2 & .6 .8 .
® 5 (= 0) [ S S I N B B
n/sy 0 -2 s -8 -9 2| -00199 | 01106 | .oeuin| .oB2o2| .o3500| .06286

° 0 0 ° 0 L0 0 4 | 00399 | .o1543 | .ou289| .20681( .o9790| .18314
-2 | —2629 o ° ° o ° 6| —.00399 | .01543 | .03755| .28397| .16582| .33786
b1 —2629 0 o0 0 o 0 .8 | —.00399 | .01543 | .03221| .30252} .19308 .48336
6] 1623 | © ° 0 ° 0 o | —.00399 | .01543 | .03221| .3052| .18680| .52208
.81 —.1629 0 0 ] o 0 :
9| —1629 o 0 0 0 0 @ [4] - (@]- @

% (G — Qa0 A) = 02629 n/:A : : : ,;6 ;8 ;9
©)] [®]+[®]+[®] 21 —.oob1k | .006TL |—.00716 | ~.06280 | —.02997 | ~.05597
we O 2 <k 5 -8 -9 4| —.oo77u | 02181 | .00586 | 12592 | ~.07672 | —.15412

° ° ° 0 0 ° ° 6| —.00t7s | Joe181 | .o1327] —.11223 | ~.20069 | -.26682
2 | 03372 | 23082 | -.05262 0, ° 0 8| —.0ot7s | 02181 | .00717 | ~.08134 | —. 08615 | —.32043
b | 05955 | L4656T| 200841 O ° ° .9 | —.0077% | .02281 | .00717 | —.0B134 | —.08426 | ~.29018
.6 -‘.05955 46567 | J4T36) L8588 | —.22921 0
B | —.05955 | .u6567 | .4208471.72769 | .91671 | © : . '

.9 | 05955 | 46567 | ‘4208 | 1.71769 |1.48954 |1.4k275
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TABLE X.— SOLUTION OF AEROELASTIC EQUATION FOR EXAMPLE WING (SUBSONIC CASE)

(a) Divergence

(b) Aerodynamic Loading

k5

% = 0,25 & = 0.552
[4] [[x]-«[s]]
'I/SIA 0 .2 b .6 .8 .9 n/sa 0 .2 o .6 .8 .9 {a,g}a {GB}P {a.g}_
0 0 0 o 4} 0 0 o |1.0000| o 0 0 0 ] 1 0.1033
W2 | —-.0041| .0067[|—.00T2 |~.0628 [~.0300]|—. 0560 .2 | .0023] .9963| 0040 | 0347 | .0165 | .0309 1 2826
& | —-.0077{ .0218 .0059 |~.1259[-.0767[~.1542] | .4 | .0043[-.0120| .9968 | .0695 | .O424 | L0851 1 4620
.6 | -.0077} .0218| .0133|-.1122(~.2027{~.2668 .6 | +0043]|-.0120(-. 0073 |1.0620 | .056T | 1473 1 6413
8] ~.0077} .0218| .0072|-.0813]~,0862|~, 3204 8 | -0043[~.0120[-. 0040 | .O4LY 1, O4T6 1769 1 8207
9 | ~. 0077 .0218] .0072|-.0813 -.08!+3'—.2902 .9 | .0043]|-,0120|-.0040 | .Okkg | .O465 [1.1602 1 .9103
Auxiliary matrices
e} , ,
0 | 1.0000f © 0 0 0 0 1.0000 [{ 0.1033
M) @16 & )] () .2| .0023| .9963| .0040| L0348 | .0166| .0310| | 1.0014 .2834
4| .o0u3(—.0120] .9968] 0702 | L0427 L0857 { 1.0110 1665
0 0 0 0 o 0 [+} -
- 6] .0043]-.0120{-.0073 [1.0629 | .0538] ,1395 19551 609k
2| .3000| .3115] .3449] .3480
8| .oou3f-.0120| .0039( .OkS6 |1 0455 | 1638 9261 7630
A .5000] L7311 L7846| .TBTE
9| .oou3[~.0120| .0039| L0456 | LObMY {1.1473 .8081 +T439
.6 7000[1.0286]1.0526 [1.0532
.8 .9000|1.0775|1.0714 |1.0713 Final matrices
.9 | 1.0000{1.0000]{1.0000|1.0000| 1.0000|1.0000 R
° : 4] o
lKlJl[c/cr] 1 (a 1 ]y 1|
’ @|0.0667 o.2u13|o.1981|o.19og]o.0581Io.0866 +1.0000 |} 0.1033
T 9320 2320
A
[ ]{%} 5 8518 .3423
wle|o|lw|l o] ® [l [o/e 7996 ||
@I 0 Io.oh83lo.ol+33|0.111+6Io.0455Io.0792 7937 J6h12
0 0 0 0 0 0 [s}
.8081 +T439
2 | -.1286|—.1561|~. 1576
& | =.3018]-. 3551 |-, 3567 .
me =L _ Mg —| _ Do ~
6 | —h2u6]-u764]-0770 L@J{Fez u.}a = 0.6524 @J{%TI u.}p - @J{m‘éi a}_ .
.8 | = uuu8|—.4849|—. 4852 i
.9 | —.4128|-.4526 [~ 4529 [~ 4529 | 2o = Ze = Lo =
I@_j{%l u}a 0.2736 [@_[{mel a}p 0.1681 I_@_l{mel g
ap = 2,208
3y
or,, = 0.T40 mg, Cau,, =o.0696mel Gy, = 0,0855 m, 5, = 0.419
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ST T04in.
w= |5 in.

G, = 5.10x 10 Ib-in?
(E1),= 947%10® Jb-in?

Tr‘ = 43,420 in- b
M, = 260,000 in-~[b

Rotation Av. value Q value

— ?V‘T -0.0002 0.16
—_— Pem 0025 .33
-—— F"T .0010 .45
—— r'rM - .0010 - 24
2 .
o
-
o .
4
i S
bt
- o
S5 8
03’ Si 8 /// \\-
T v Qf o T
c s s
2 3,7 ——
94; O-/ _____ — - - - - -
'_’; £ 7\\\\ -
4—6‘<‘°_ o\\ ——— R -
o % —o— \\\\ _———
S —— - - - -—-
]
0 20 40 60 80 100 120

Distance along span, n,. inches

Figure 2.~ Rotations of a 45° swept box beam due to root
deflections (data from reference 5).
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Figure 3.- Parameters of the example wing .
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Figure §.- Load distribution of example wing.
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